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We construct a self-adjoint time operator for massless relativistic systems in terms 
of the generators of the Poincar6 group. The Lie algebra generated by the time 
operator and the generators of the Poincar6 group turns out to be an infinite- 
dimensional extension of the Poincar6 algebra. The internal time operator gener- 
ates two new entities, namely the velocity operator and the internal position 
operator. The transformation properties of the internal time and position opera- 
tor under Lorentz boosts are different from what one would expect from relativity 
theory. This difference reflects the fact that the time concept associated with the 
internal time operator is radically different from the time coordinate of Minkow- 
ski space, due to the nonlocality of the time operator. The spectral projections 
of the time operator allow us to construct incoming subspaces for the wave 
equation without invoking Huygens' principle, as in two and one spatial dimen- 
sions where Huygens' principle does not hold. 

1. I N T R O D U C T I O N  

Consider  the un i ta ry  evolut ion group Ut, t ~ R ,  on a separable Hilber t  
space W.  A n  in ternal  t ime opera tor  T for Ut is a self-adjoint opera tor  T 

with d o m a i n  ~ on  which the fol lowing proper ty  holds:  

U _ t T U t =  T +  t I  (1) 

Rela t ion  (1) means,  of  course, t h a t  the d o m a i n  ~ is invar ian t  under  the 

un i ta ry  g roup  Ut. 
The in ternal  t ime  opera tor  is canonical ly  conjugate  to the anti-self- 

adjoint  generator  Po of  the un i ta ry  group Ut = eP~ 

[Po, T] = - I (2) 
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The time operator T allows us to attribute the average age (y, Ty) to 
the states y ~ .  The average age of the evolved state Uty advances in step 
with the external clock time t: 

(Uty, TUty) = (y, Ty) + t (3) 

Relation (3) is equivalent to the internal time property (1). 
Internal time operators for unitary dynamics were introduced by Misra 

(1978) in the context of unstable Kolmogorov dynamical systems. The unit- 
ary group Ut defines the evolution of densities in the Liouville space and the 
spectral projections of the time operator are the conditional expectations 
over the time-evolved K-partition. These dynamical systems allow for an 
exact passage to irreversible Markov processes through nonunitary 
intertwining transformations (Goldstein et al., 1981; Misra and Prigogine, 
1982; Prigogine, 1982). Similarly, quantum systems admit time operators on 
the Liouville space of density operators if the Hamiltonian has absolutely 
continuous spectrum (Misra et al., 1979). Time operators were also intro- 
duced for relativistic fields (Misra, 1987; Antoniou, 1988; Misra and 
Antoniou, 1988; Antoniou and Misra, 1989). The existence of time operators 
for relativistic fields implies that the relativistic fields are Kolmogorov 
dynamical systems. 

In this paper we study the time operator for relativistic fields and its 
transformation laws under Lorentz boosts, which turn out to be radically 
different from what is expected by special relativity. Naturally, we are led to 
the Lie algebra generated by the time operator and the ten generators of the 
P0incar6 group. This algebra, called the relativistic internal time algebra, 
turns out to be an infinite-dimensional extension of the Poincar6 algebra. 
The internal time gives rise to the velocity observable and to an internal 
position observable. Since the transformation laws of the internal time and 
position operators under Lorentz boosts are different from the correspond- 
ing formulas of Einstein, the internal space-time associated with the time 
and position operators is not the Minkowski space-time of events labels of 
localized observations. The algebra of relativistic systems with internal time 
generates nonlocal symmetries and shows that the simple wave equation is 
not only invariant under the 15-parameter conformal group, but also under 
an infinite-parameter group of nonlocal transformations. 

2. A TIME OPERATOR FOR THE WAVE EQUATION 

Consider the solutions of the wave equation: 

(4) 
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in the Fourier representation 

o/(x) = f d ( k )  e-  i k ~ ( x )  
.1 

~0= Ikl20 (5) 

where k and x stand for the 4-vectors (x ~ = t, x~x2x 3) and (k ~ klk2k 3) ; kx  = 
k ~ 1 7 6 1 7 6 1 7 6  is the Minkowski scalar product and 
d(k) = dk ~ dk I dk 2 dk 3 the Minkowski volume measure. Any solution ~t of 
the wave equation is concentrated on the light cone k g - [ k [  2= 0 in the 
Minkowski space. The wave frequency is ko = + I kl = co in the upper cone 
and ko = -  [k[=-co in the lower cone. 

The square-integrable solutions O(k) satisfy the condition 

f~ d(k) ~=o~2 I vT(k) [2<+ oo 
O9 

and form a Hilbert Space o~ with respect to the relativistically invariant 
scalar product: 

( ~ ,  02) = i d(k) Or(co, k)l/)2(co, k )+  I d(k) O*(-co, k)O2(-co, k) (6) 
d m  d c o  

The Hilbert Space ~ is the direct sum of the Hilbert spaces ~ +  and 
~ f_ ,  which carry the two mass-zero, helicity-zero irreducible representations 
of the Poincar6 group. The ten anti-Hermitian generators of the Poincar6 
group are given as 

P o O ( k ) = - i k o O ( k )  

P ~ O ( k ) = - i k ~ O ( k )  

J O O ( k ) = - ( k  b ~ r  Ob)O(k) 

N O O ( k ) = - k o  ~ O ( k )  

(7) 

(8) 
(9) 

(10) 

Pu, p =0, 1, 2, 3, are the generators of space-time translation; J", a = 1, 2, 
3, are the generators of rotations; and N", a = 1, 2, 3, are the generators of 
Lorentz boosts. 

We remark that the representation space ~ provides a spectral repre- 
sentation for the unitary group Ut: 

U,~(k )=e -~~  (11) 
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The ten generators P' ,  ja, N a satisfy the commutation relations of the 
Poincar6 Lie algebra 

here 

1, 

C.ab c -~- - -  1, 
O, 

is the Levi-Civita tensor, and 

[pu, p v] = 0 (12) 

[ j a ,  j b ]  = •abcjC (13) 

[N a, N b] = -  e,,bcN c (14) 

[ja, N b] = E~bcN ~ (15) 

[ j a ,  e 0 ]  = 0 (16) 

[N", Po] = - P =  (17) 

[j~, pb] = 8~b~p~ (18) 

[N ~, phi = _ 3abPo (19) 

abc even permutation of 123 

abc odd permutation of 123 

otherwise 

0, a # b  
'5"b= 1, a=b  

is the Kronecker delta. 
The massless relativistic dynamical systems are characterized by the 

condition 

(po)2 = (p1)2 + (p2)2 + (p3)Z_ i pi2 

A Hermitian time operator for the unitary evolution group Ut = e v~ of 
any massless relativistic dynamical system may be constructed from the 
generators N a, Pa of the Poincar6 group: 

3 

T ~ = - � 8 9  ~ ( N a e " l P l - 2 +  ]PI-2paN '~) (20) 
a = l  

The expression (20) is found after observing that 

Po, :=,~= N aPa =a~l [P~  +(PZ)2 +(P3)2= IPI: 
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3 Therefore the operator - ~  = ~ NaP'IP] - 2 satisfies the canonical commuta- 
tion relation 

a = l  

and (20) arises after symmetrization. The concrete form of the operator TR 
on the space ~ of solutions of the wave equation is 

i 1 
TRft=i ~oo O+~ ~ ~t (21) 

This formula is found by replacing the forms (8) and (10) for the generators 
P"  and N a in (20) and using the identity 

k ~ 

a = l  

The identity (22) is easily proved from the fact that 

ko = 4- [(kl) 2 + (k2) 2 + (k3)21 I/2 

A suitable domain ~ n  for the time operator TR consists of all rapidly 
decreasing, infinitely differentiable functions g(k) of the Schwartz class 6 a 
on R 4, concentrated on the light cone, k 2 = ]k ] 2, which satisfy the condition 

(k) = 0 in some neighborhood of the point k = 0. The Hermitian time opera- 
tor TR and the Poincar6 generators P", J', N" are defined in NR and do not 
lead out of @R. The domain @n is also dense in ~ and invariant under the 
action of the Poincar6 group. However, the time operator has to be self- 
adjoint. We have therefore to show that the densely defined Hermitian opera- 
tor TR has a self-adjoint extension T with domain N and also that the 
extension T satisfies the internal time property (1) in the domain @. We 
shall show this by observing that the pair (U,, TR) is unitary equivalent to 
the canonical pair (e -ik~ i ~/&o) in another spectral representation of U,, 
which we shall construct. This representation is carried in the Hilbert space 
5r ~ + oo~ • s of square-integrable functions f(ko, !!) on the unit sphere S. 
Here 11 is the unit vector in the direction of the propagation characterized 
by the spherical coordinates (0, q~). The scalar product on s176 + o~)• s is 

f ( f , g )=  dko dO1)f*(ko, tl)g(ko,~l) 
- o o  

(23) 

with d(il) =dO sin 0 d~. 
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The unitary transformation V of ~ onto A~ o0 + oo~ • s is 

V: (* ~-+ f = V ff/ 

f (ko ,  q) = V~(ko,  q) = o~'/20(k) 

The unitarity of V follows immediately: 

(0 ,  02) d(k) ~)*(r k )+  d ) . ,  , - - -  gl (-co, k)~2(-co, k) 
- j  r_.o 

= do d(q ) r Rro)I~'2(r qo~) 

f); + &o dO1) ~O*(-co, ~io))g,2(-co, qco) 

= dko dOl)(VOl)*(ko, q)(V02)(ko, q) 
- - o O  

The unitary group U, on J~f has the same form in ~q~-~+~)• 

VUtV-  ' f(ko, n) = e-ik~ q) 

while the time operator TR is transformed into the canonical form i O/ako: 

VTRV- l f ( ko ,  q)=  co I/2 i - - + -  f (ko ,  q) 
&o 2 

~ [r q)] +_/ 1 7 f ( k o ,  q) 
= r~ ~ko 2 ~o 

= i ~oof (ko ,  q )  

The domain ~R is mapped onto the domain V[~R], which consists of all 
Schwartz functions f(ko, q) on (-oo, + oo) x S which vanish in some neigh- 
borhood of k0 = 0. 

The domain V[@R] is dense and invariant under the unitary 
transformations Ut=e :qk~ The operator i ~ / & o  on V[~R] has the self- 
adjoint extension Tz = i a /&o with domain ~z, which consists of all abso- 
lutely continuous square-integrable functions f with square-integrable 
derivatives f ' .  

The domain @z is invariant under the unitary group U, = e -;k~ and it 
can be directly verified that the operator Tz = i ~ /&o satisfies the internal 
time property (1) on ~x. Because of the unitary equivalence /1, we conclude 
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that the time operator TR on N R ~  has the self-adjoint extension T= 
V-~TzV  with domain ~ =  V-~[~z] and that T satisfies the internal time 
property (1) with U~ = e-  ~k0,. 

The internal time property (1) is equivalently expressed in terms of 
the spectral projections P~, tEN, of the operator T as the imprimitivity 
condition: 

P,+, = UtP,U-,  (24) j'+co 
T= r dP~ (25) 

- - c O  

The imprimitivity condition arises simply by inserting the expression (25) 
into the internal time property (1). Because of the imprimitivity condition 
the range ~ 0  of the spectral projection P0 of the time operator T is an 
incoming subspace as defined by Lax and Phillips (1989) in the context of 
the scattering theory of wave equations. In particular the projection P0 of 
the time operator Tz = i ~/~ko in the spectral representation is the projection 
onto the upper Hardy-Lebesque space of functions f (ko,  q) which are the 
Fourier transforms of functions with support ( -oc ,  0). This can be seen 
from the fact that the differentiation operator is unitary equivalent to the 
multiplication operator through the Fourier-Plancherel transformation (see, 
for example, Akhiezer and Glazman, 1981). Therefore the upper Hardy 
Lebesque space is an incoming subspace with respect to the evolution group 
Ut = e-  iko~ in the spectral representation of the wave equation. This incoming 
subspace is the same with the Lax and Phillips (1989) incoming subspace 
which they constructed on the basis of Huygens' principle. [For the Lax- 
Phillips scattering theory see also Reed and Simon (1979), Vol. 3.] 

We are therefore able to construct incoming subspaces for free wave 
equations from the algebraic construction of the time operator, without 
invoking Huygens' principle. In fact, incoming subspaces can be constructed 
from the time operator in the cases of one and two space dimensions where 
Huygens' principle does not hold. The internal time operator for the one- 
and two-dimensional wave equation is given in Appendix A. However, this 
method is not applicable to wave equations with rigid obstacles, as the 
notion of rigid obstacle is not relativistic. 

3. THE RELATIVISTIC INTERNAL TIME ALGEBRA 

The algebra of relativistic systems with internal time is the Lie algebra 
generated by the ten generators pu, ja, N a of the Poincar~ group satisfying 
the commutation relations (12) (19) and the internal time T given by (20). 
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The commutation relations of the internal time with the ten generators 
of the Poincar6 group are 

[P0, T] = - I (26) 

[ p a  T ]  = - e a e o l  ~ - V a (27) 

[J~, T] = 0 (28) 

[N a, T] = T p a p o l  = oa (29) 

These commutation relations can be verified directly for the wave equa- 
tion by replacing the explicit forms (7)-(10) for the Poincar6 generators and 
the form (21) for the time operator using the identity (22). A general proof 
for massless relativistic systems of any helicity is given in Appendix B. The 
commutation relations may also be proved by noting that the time operator 
(20) may be expressed in terms of the dilatations generator D. The relevant 
formulas are given in Appendix D. 

The commutation relations (27) and (29) show that the internal time 
does not commute with the generators of translations and Lorentz boosts 
N ~ and that two new entities va=papol and Q~= T V  ~ appear which gen- 
erate the infinite number of entities V~V b, w v b w , . . ,  and T V a V  b, 
Tvavbvc,... a s  shown by the commutation relations of V ~ and Qa: 

[P0, V ~ =0 (30) 

[e ~ v~]=0 (31) 

[J~ v ~] = ea~cV c (32) 

[N ~, V b] = V~V b -  &~bI (33) 

IT, V~]=O (34) 

[ v a, v ~ ] = 0 ( 3 5 )  

[Po, Q~] = -  v" (36) 

[p~, Qb] = _  VaV b (37) 

[j~, Qb] = eabcQC (38) 

[U ~, Qb I = 2 r v "  V b - 6obT (39) 

[T, Qb] = 0 (40) 

[V ., Qb] =0 (41) 

[Q~, Qb] = 0 (42) 
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The entities v a v  b and T v a v  b, in turn, generate v a v b v c  and T v a v b v  c, a s  

shown in the following commutation relations, which are the only nonzero 
commutation relations of V ~ V b, T V  a V b: 

[J~, V b  V c] = C~bc' V c  Vr + e,~b' vb v b" 

[ N  a, V b V ~] = 2 V a V b V c - (~ab V b  -- ~ac V c  

[Po, T V  b V c] = --  V b W e 

[pa ,  T v b v  c] = _  ~ / . a v b v c  

[ j a ,  T V  b V c] = ~abc' T V  C V c' + ~eacb' v b  vb '  

I N  a, T V b V  c] = 3 T V a V b V  c - ~abQ 6 --  ~acQ ~ 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

The commutation relations (30)-(48) follow easily from (26)-(29) and the 
Poincar~ algebra. 

The commutators of the monomials V a V b . . .  and T V "  V b . . .  and the 
boost generators N a always give rise to monomials of degree greater by one 
and thus the infinite commutative algebras I/tv J and T I I E v  ~ of polynomials 
in velocities V a emerge. 

The relativistic internal time algebra includes the Poincar6 algebra with 
commutation relations (12)-(19) and the monomials V " V  b . . . .  and 
T V  ~ V b . . .  with commutation relations (26)-(48). The form of the commuta- 
tion relations shows clearly that the relativistic internal time algebra is the 
semidirect sum Lie algebra 

~ 4 ~  (Iltvl @ T I I t v j )  (49) 

or 

~4  ~ [~-4 ~ (1-I[v] (~ TI-ltvl)] (50) 

where ~4 and ~ 4  stand for the Poincar6 and Lorentz lie algebras, 
respectively. 

Expression (49) shows that the RIT algebra is an extension of the 
Poincar6 algebra by the infinite commutative algebra l-Itv I @ T I I t v  1. The 
infinite Lie algebra ~r = ~ ' -4ff  (I 'Itv] (~ TrIEvl) in expression (50) is nilpotent 
of order two with center 17 t vl. For the relevant Lie-algebraic definitions see, 
for example, Barut and Raczka (1977). 

The semidirect sum structure of the relativistic internal time algebra 
means that the infinite algebra 5f is a representation space for the Lorentz 
algebra 5f4. Therefore the characterization of this representation by means 
of the Gelfand-Naimark numbers provides a characterization of the rela- 
tivistic internal time algebra and gives the possibility for comparison with 
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infinite Lie algebras with the same structure, such as the Bondi-Metzner- 
Sachs algebra. The two Lie algebras turn out to be different and the method 
also reveals some minor errors in the commutation relations of the BMS 
algebra (Antoniou and Misra, 1991). 

The relativistic internal time algebra commutation relations (12)-(19) 
and (26)-(48) are abstract and formal. In any representation of this algebra 
the ten generators of the Poincar6 group are taken to be anti-Hermitian 
operators, while the internal time T and the monomials V a V b . . . ,  

T V  a V b . . .  are Hermitian operators. Furthermore, the ten Poincar6 genera- 
tors and the time operator have to be defined in a common dense domain 
@R and should not lead out of this domain. This is indeed true for the 
helicity-zero system (the wave equation), as has been shown in Section 2. 
For higher-helicity systems similar arguments apply for the domain of the 
algebra. 

For higher-helicity systems the time operator and the relativistic internal 
time algebra satisfy the supplementary conditions associated with the 
dynamical equations. The helicity-one system, for example, is the electro- 
magnetic radiation field in free space described by the Maxwell equations. 

The Maxwell equations can be expressed in terms of the vector potential 
A u,/1 =0, 1, 2, 3, as the wave equations 

~2A~ = AA ~ 

together with the Lorentz gauge condition: 

8~A u = 0 

It can be verified directly (Antoniou, 1988) that the time operator is compat- 
ible with the Lorentz condition, namely 

0u(TA~) = 0 if ~ u A u = O  

Similarly, the helicity-two system is the linear gravitational field in flat 
space-time. The linear deviation from the Minkowski metric is the symmetric 
2-tensor field h u v,/~, v = 0,1, 2, 3, satisfying the wave equations 

~h ~ v = Ah" v 

together with the De Donder harmonic condition 

Ovh ~ v = 0 

In this case also, the time operator is compatible (Antoniou, 1988) with the 
De Donder condition. 

It is well known that the physically observed integer-helicity systems, 
namely the scalar waves, the free electromagnetic radiation field and the 
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linear gravitational field in flat space-time, are real fields. Therefore the 
relativistic internal time algebra has to preserve the reality of these fields. 
This is indeed the case, as can be directly verified from the explicit forms of 
the Poincar6 generators and the time operator. In the case of the wave 
equation in the Fourier representation, the reality condition is expressed as 

O*(-k) = ~(~) (51) 

4. ON THE MEANING OF THE COMMUTATION RELATIONS 

The commutator [J", T] = 0 in (28) shows that the age of the system 
does not change under rotations. However, the age of the system changes 
under space translations, as the commutator (27) shows, a fact expected for 
any massless relativistic system" (P0) 2 = (pl)2 + (p2)2 + (p3)2. For if [pa, T] = 

0, then we would have [P0, T] = 0, contrary to the canonical commutation 
relation [Po, T] = -  L 

The internal time T generates via (27) the velocity operator V a= 
Po 1p~ of the system. Relation (32) shows that the velocity V a transforms 
as a vector under space translations and relation (33) is an expression of 
the Einstein velocity transformation formula under Lorentz boosts with 
velocities v a = cth ~'~, 

a d (e~,N, va  ~N ~ V 1 = ~  e-:~176 

_ d ( V~176 / 
d~ a 1 - ( t h  (aV~)/c/~o=o 

1 
= -  V ~ V  ~ -  cI  

c 

d ( v  o- (ch r 
[Nb' Va] = ~  \I - (th ~ v b ) / c l : o = o  

1 
= _  V ~ V b 

c 

The commutation relation (33) is the natural property of the relativistic 
velocity operator (Jordan, 1977) and brings into the algebra the nonlinearity 
which generates the infinite elements. This feature of the velocity operators 
was also mentioned by Durant (1973). 
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The transformation of the internal time under Lorentz boosts is 
expressed in the commutation relation (29). For example, under a Lorentz 
boost with velocity v 1 = cth (1, 

eON~T e -  ~INI - -  1 T 
)'(v 1) 1 - v z U / c  2 (52) 

with 

1 ~ ( v ' )  = 
[ 1  - (vl/c)2] 1/2 

For the proof of formula (52) and .of the following formulas see Appen- 
dix C. 

As mentioned in the Introduction, the internal time allows us to attri- 
bute an average age to field states. According to formula (52), the average 
age of the boosted state is different from what one would expect from 
Einstein's time transformation formulas. This difference reflects the fact that 
the internal time operator has nonlocal character, as it involves the operator 
I P[ -2, which is nonlocal when expressed in spatial coordinates. 

Formula (29) also shows that the internal time generates with the boost 
generators the new entity Q~ = T V  a to be identified with a kind of internal 
position observable of the relativistic system. Relation (36) shows simply 
that Q~= v a and relation (30) expresses that we have a free system: l 2~= 
Oa = 0. The compatibility of the internal position observables QI, Qz, Q3 is 
expressed by their commutativity (42). Relation (38) shows that the observ- 
ables QI, QE, Q3 transform like the components of a 3-vector under space 
rotations. The transformation of the internal position operator Q~ under 
Lorentz boosts is expressed by (39). For example, 

e(IN1QI e _ ( i N 1  1 Q1 _ To 1 
7(v  1) ( I -  v I V1/c2) 2 (53) 

This formula also differs from Einstein's space transformation formulas. 
The commutation relation (37) is not the expected Heisenberg relation of 
localizability, 

[pa, Qb]  = _ 6abI 

Expressions involving V " V  b in the commutator of the position observable 
with the momentum have been discussed in various proposals for relativistic 
position observables (e.g., Pryce, 1948; Finkelstein, 1949; Johnson, 1969; 
Durant, 1973). 
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The internal position Q~ is related to the center of energy X ~ through 
the formula 

Oa= iP01(X. V)XOle0l- ,  (54) 

The center of energy of a relativistic system is the symmetrized operator: 

X a = - �89 ( N a e o  ~ + P o ' N ' )  (55) 

The Lorentz boost generator N" is interpreted as the moment of the energy 
(energy times the position coordinate of the center of energy of the system), 
which replaces the center of mass of Galilei systems (Sudarshan and 
Mukunda, 1983; Pryce, 1948). 

The center of energy is the Newton-Wigner (1949) position operator 
for massless elementary systems of helicity zero, 

i k" 
X" = i (56) 

ak ~ 2 Ikl 

5. CONCLUDING REMARKS 

The time and position operators T, Q", a = 1, 2, 3, of relativistic fields 
provide an internal space-time arising from the intrinsic dynamics of the 
field as a whole. The transformation laws (52) and (53) of T and Qa under 
Lorentz boosts are radically different from the corresponding formulas of 
Einstein. Therefore the space-time corresponding to the internal time and 
position is not the Minkowski space-time of events labels of the observer's 
registrations. The tetrad T, Q~ is not a 4-vector. Attempts to construct 4- 
vector relativistic position operators suffer from other difficulties, such as 
lack of Hermiticity and/or mutual noncompatibility; see, for instance, the 
review of Kalnay (1971). 

The algebra of relativistic systems with internal time is an infinite- 
dimensional extension of the Poincar6 algebra by the infinite commutative 
algebra rIEv I �9 TYIEvl of the monomials v a v  b . . . and T v a v  b . . . .  Since the 
massless relativistic fields carry representations of the algebra, one expects 
that the massless fields have a larger symmetry group than just the 15- 
parameter conformal group. These additional symmetries correspond to the 
generators V ~ V  b . . . .  T v a v b . . .  ; they are nonlocal and they cannot be 
implemented by point transformations of Minkowski space-time, in contrast 
to the Poincar6 and conformal symmetries. This new type of nonlocal inter- 
nal symmetry of fields associated with the internal time does not seem to be 
related to any known type of internal symmetry. The nonlocal symmetries 
refer to the field itself; they are intrinsic properties of the field and not of 
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the operational Minkowski continuum of events-labels of the infinite degrees 
of freedom of the field. 

It is clear that formula (20) defines a formal time operator 7",, for the 
massive Klein-Gordon field as well. The operator Tm acts on the Hilbert 
space of square-integrable solutions of the Klein-Gordon equation. The 
operator Tm is densely defined on the domain Nm, which consists of all 
functions O(k) which are concentrated on the two mass hyperboloids 
(k0) 2-  I k [ 2 = m 2 and vanish in some neighborhood of each of the two points 
(0, m) and (0, -m).  

The operator Tm has self-adjoint extensions because it commutes with 
the conjugation operator according to von Neumann's theorem (see, for 
example, Reed and Simon, 1979, Vol. 2, Theorem X.3), 

CO(ko, k) = ~*(-ko, k) (57) 

However, none of the self-adjoint extensions of Tm can satisfy the inter- 
nal time property (1), because the spectrum of the generator of the unitary 
group Ut is not the entire real line and it is well known that if Ut admits a 
self-adjoint time operator, the spectrum of the (self-adjoint) generator of Ut 
must be the entire real line. 

Let us also mention that the commutation relations of the correspond- 
ing algebra for the massive systems have a more complicated structure. 

APPENDIX A. TIME OPERATORS FOR THE WAVE E Q U A T I O N  
IN ONE AND TWO DIMENSIONS 

The internal time (20) for the one-dimensional wave equation is 

TR = - �89 + (P')-2pINI] (A1) 

After substituting the expressions (8), (10) for the generators N ', P~ we 
obtain 

0~ i 
TR ~ = i 0 (A2) 

Oko 2ko 

The operator (A2) is unitary equivalent to the canonical form under 
the unitary transformation V: 

v~= Ik' I-'/2~ (A3) 



Relativistic Internal Time Operator 133 

The unitarity of V follows immediately as in the three-dimensional case: 

�9 J~d(kl)lk~l f k~ (~1, 02) = .  ~*02 = aT(k~) (I I - t / 2 0 1 ) * ( I k ~ l - 1 / 2 g ' 2 )  

For the two-dimensional wave equation the internal time (20) is in the 
canonical form: 

TR0 = i oh:U-- ~' (A4) 

Therefore there is no need for any unitary transformation. The Hilbert space 
Jg provides the canonical spectral representation for the two-dimensional 
wave equation. 

APPENDIX B 

The commutation relations (26)-(28) follow immediately after observ- 
ing that the internal time (20) may be written as 

T =  - ( N A P " +  �89 [V I -2 (B1) 

Formula (B1) follows with the help of the formulas 

P a N  a = N " P "  + 3P0 (B2) 

[N a, [p l -2]=2e0e~lP[  -4 (B3) 

The proof of formula (29) is more involved: 

[N ~, T] = [N ~, - ( N A P  a + �89 I P 1-2] 
1 1 - 2  

= - [ N  1, N a P  a] IP1-2-  ~[N, Po] IPl 

- N o P " [  N1, ]P I - 2] 1 1 ~ P o [ N ,  [P]-2] 

= _ ( j 2 p 3 _  j 3 p 2 _  N l P o )  [PI -2 + �89 I -2 

_ _ 2 N a P a p l p o  Ip I -4_ (po)2pi Ip I -4 

We express j2 and j3 in terms of the Pauli-Lubanski-Bargmann vectors 
W 2, W 3 : 

j 2  = ( W 2 _ N 3 p l  + N l p 3 ) p  ~ 1 
(B4) 

j 3  = ( W 3 _ N1p2 + N 2 p 3 ) p  ~ 1 
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After the calculations we get 

[ N  a, T] = - [ N " P a P I P o  I + ( W 2 p s  _ W s p 2 ) p  ~ 1 

+ g l p o ( i p l 2 p o 2 _ i ) ]  I p  ] -2  

-- 2 N a p a P 1 P o  IP1-4 - -  �89 IP1-2(2p~ I P I -2_  I) 

It is well known (Bargmann and Wigner, 1948) that for all massless systems 
the Pauli-Lubanski-Bargrnann vector is proportional to the momentum vec- 
tor; therefore 

W 2 p  3 - W 3 p  2 = 0 

Using the fact that I PI 2= (Po) 2, we get (29) 

[ N ' ,  T] = - N a P ~ P ' P o ~  IP1-2-2Naeaeleole]--4__ �89 Ie1-2 
= - ( N  aP`` + �89 IP1-2p'Po' 
= T p 1 p o  1 

APPENDIX C 

Formula (52) can be proved as follows. From the Baker-Campcll-  
Hausdorff formula 

e O N ' T e  -O~v'= T +  ~l[N1, T]  + (~.1)2 [N  1, [ N  1, T]]  + . . -  (c1) 

and the commutation relations of T, we conclude that the right-hand side 
of (C1) should be of the form T f ( V ~ ) .  The function f ( V  ~) can be found 
from the fact that the commutation relation [P0, T] = - I is preserved under 
Lorentz boosts: 

-~1N1 ~'INI -- - ~IN1- 
[eON1po e , e 1' e ] = -- I 

~ [ P o  ch 51 _ p l  sh 51, Tf (V1) ]  = - I  

�9 r  ~) ca ~'~ + l  v ~ f ( v 1  ) sh 51 = - I  
C 

�9 , ~ f ( V ' )  - 57 1 _ 1 
ch - s h ~ l ( 1 / c ) V  l r(v~)(I-v~V~/c2) 
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Formula (53) follows from (52) and the velocity operator transformation 
formula. Formula (54) follows easily using the lemma 

I e o l x : l P o [ - '  = x " -  v " e o  1 (C2) 

Formula (C2) follows from the commutator 

[Po, X a] = - V a (C3) 

APPENDIX D. TIME OPERATOR AND THE 
DILATATION GENERATOR 

The time operator (20) may be written as 

T =  - �89 (Napa t P [ - 2Po + Po I a [ - 2paNa ) + �89 p o l  

o r  

with 

(D1) 

D = - �89 [ -2P0 + P0 I P I -2paNa) (D3) 

The operator (D3) satisfies the commutation relations of the dilatation 
generator for massless systems, namely 

[D, P~] = P~ (D4) 

[D, J~ = 0 (DS) 

[D, N a] = 0 (D6) 

Formulas (D1), (D4), and (D5) follow immediately. The proof of 
formula (D6) is more involved and it is based on the Pauli-Lubanski- 
Bargmann vector following an argument similar to the discussion of formula 
(29) in Appendix B. Formula (D6) may also be proved from (29) and 
(D2). The properties (D4)-(D6) of the operator (D3) were also proved by 
Fushchich and Nikitin (1978), using explicit forms of the Poincar6 genera- 
tors in the space of solutions of massless relativistic equations. However, 
our proof does not depend on any concrete representation of the Poincar6 
algebra. 

The commutation relations (26)-(29) follow immediately from (D2) 
and (D4)-(D6) together with the commutation relations of the Poincar6 
algebra (12)-(16). 

I -1  
T = D P o  1 + ~Po (D2) 
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